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Abstract 

For the analysis of square contingency tables with ordered categories, the present 
paper proposes two kinds of marginal asymmetry models and gives decompositions 
of models, which have the structure of asymmetry for cumulative probabilities 
that an observation will fall in row (column) category i or below and column (row) 
category ( )ij >  or above. The decompositions are obtained by using the extended 
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quasi-symmetry, the extended marginal homogeneity, and the marginal 
asymmetry models, for cumulative probabilities. The new models and 
decompositions are applied to the father’s and his son’s occupational mobility data. 

1. Introduction 

Consider an RR ×  square contingency table with the same row and 
column classifications. Let ijp  denote the probability that an observation 

will fall in the i-th row and j-th column of the table ( ,1;,,1 == jRi …  

)., R…  

Generally, many observations tend to fall in (or near) the main 
diagonal cells of the square table. Thus, the independence between the 
row and column classifications is unlikely to hold. So, we are interested in 
whether or not there is a structure of symmetry, instead of independence, 
in the table. 

For the analysis of such data, we may use models, which represent 
the structure of symmetry, based on the cell probabilities { }ijp  (for 

example, Caussinus [4]; Bishop et al. [2], p. 282; Goodman [5]; Agresti [1]; 
and Tomizawa [9]). As another approach, we may use models based on 
the cumulative probabilities { },ijG  defined by 
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Tomizawa [10, 11] considered an extended marginal homogeneity 
(EMH) model, which indicates that the row marginal totals summed by 
multiplying the probabilities for the cells in the lower left (or upper right) 
triangle of the square table by a common weight are equal to the column 
marginal totals summed in the same way. The EMH model may also be 
expressed as a multiplicative form for { } ,, jiGij ≠  as follows: 
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where jiij Ψ=Ψ  for 1=− ij  (see also Tomizawa [12]). A special case of 

this model obtained by putting 1=∆  is equivalent to Stuart’s [7] 
marginal homogeneity (MH) model. 

Miyamoto et al. [6] considered two models. One is the cumulative 
linear diagonals-parameter symmetry (CLDPS) model defined by 
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where ,jiij Ψ=Ψ  and the other is the cumulative quasi-symmetry (CQS) 

model defined by 

( ) ,,,,,1;,,1 iiiiijjiij pjiRjRiG Ψ=≠==Ψβα= ……  

where .jiij Ψ=Ψ  A special case of the CLDPS model obtained by putting 

1=Θ  is equivalent to Bowker’s [3] symmetry (S) model. The CQS model 
with { }ijG  replaced by { }ijp  is Caussinus’s [4] quasi-symmetry (QS) 

model. 

Tomizawa et al. [14] considered the extensions of the CLDPS and 
CQS models. The cumulative two-ratios-parameter symmetry (C2RPS) 
model is defined by 
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where ,jiij Ψ=Ψ  and the cumulative extended quasi-symmetry (CEQS) 

model is defined by 

( ) ,,,,,1;,,1 iiiiijjiij pjiRjRiG Ψ=≠==Ψβα= ……  

where jiij Ψγ=Ψ  for .ji <  Some other models based on the cumulative 

probabilities have been considered, although the details are omitted (for 
example, Tomizawa [12]; Tomizawa et al. [13]; Tomizawa and Tahata 
[15]). 
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The present paper proposes decompositions of the C2RPS, CLDPS, 
and S models. Section 2 gives two new models. Section 3 gives the 
decompositions. 

2. Cumulative Symmetry Models 

Consider two models defined by 
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We shall refer to models (2.1) and (2.2) as the cumulative two-weights 
modified marginal symmetry (C2WM) 1 and 2 models, respectively. The 
C2WM-1 model indicates that for RR ×  table based on cumulative 
probabilities modified by multiplying the cumulative probability kiG  in 

the lower left triangle of the table by two weights 1∆  and ,ik−Ω  the row 
totals summed in the upper right triangle of the table are equal to the 
column totals summed in the lower left triangle of the table. The C2WM-
2 model also represents a similar structure. Denote the row and column 
variables by X and Y, respectively. Under the C2WM-1 model, if 

11 ≥Ω∆ l  for ,1,,1 −= Rl …  then ( ) ( ).PrPr YXYX >≥<  The C2WM-2 
model also has a similar property. 
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We shall refer to the C2WM-1 (C2WM-2) model with ( )11 21 =∆=∆  
as the C1WM-1 (C1WM-2) model. 

3. Decompositions of Cumulative  
Asymmetry Models 

In this section, we shall propose decompositions of the C2RPS, 
CLDPS, and S models. 

The CEQS model may be expressed as 

( ).jiG
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Note that we may set, e.g., 1=γR  without loss of generality. Also, this 
model may be expressed as 

( );kjiGGG
GGG

ikjikj

kijkij <<γ=  

see Tomizawa et al. [14]. 

Let 
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Then, we consider the model defined by 

,1∆=D   (3.1) 

where 1∆  satisfies specified two equations in (2.1). Similarly, we consider 
the model defined by 

,1
2∆

=D   (3.2) 

where 2∆  satisfies specified two equations in (2.2). We will refer to 
models (3.1) and (3.2) as the D-1 and D-2 models, respectively. Especially, 
when we specify two equations for si =  and ti =  in (2.1), we shall 
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denote the D-1 model by D-1 ( )., ts  Similarly, when we specify two 
equations for mi =  and ni =  in (2.2), we shall denote the D-2 model by 
D-2 ( )., nm  Then, we obtain the decomposition of the C2RPS model as 
follows: 

Theorem 1. For ,2,1=t  the C2RPS model holds, if and only if all 
the CEQS, C2WM-t, and D-t models hold. 

Proof. For ,2,1=t  if the C2RPS model holds, then all the CEQS, 
C2WM-t, and D-t models hold. Assume that the CEQS, C2WM-t, and D-t 
models hold, and then we shall show that the C2RPS model holds. 
Consider the case of .1=t  From the assumption, we get .γ=D  Thus 

.1∆=γ  

From the C2WM-1 model, we see 

.1,,11 −−
+
− Ωγ== RRRRR GGG  

From the CEQS model, we see 
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with 1=γR  without loss of generality. Thus .1 Ω=γ −R  Also, from the 
C2WM-1 model, we see 
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From the CEQS model, we see 
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From (3.3) and (3.4), we obtain .2
2 Ω=γ −R  In a similar way, we obtain 

iR
i

−Ω=γ  for .,,1 Ri …=  Therefore, we obtain 
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j
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Namely, we obtain the C2RPS model. Also, the case of 2=t  can be 
proved in a similar way to the case of .1=t  The proof is completed. 

Next, we obtain the decompositions of the CLDPS model as follows: 

Corollary 1. For ,2,1=t  the CLDPS model holds, if and only if both 

the CQS and C1WM-t models hold. 

We obtain another decomposition of the C2RPS model as follows: 

Theorem 2. The C2RPS model holds, if and only if both the CEQS 
and EMH models hold. 

Proof. If the C2RPS model holds, then both the CEQS and EMH 
models hold. Assume that the CEQS and EMH models hold, and then we 
shall show that the C2RPS model holds. We see 
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In a similar way, we obtain 
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iR
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Therefore, by putting ,γ∆=Ω  we obtain 
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Namely, we obtain the C2RPS model. The proof is completed. 

By putting 1=γ  in the proof of Theorem 2, we obtain another 

decomposition of the CLDPS model as follows: 

Corollary 2. The CLDPS model holds, if and only if both the CQS 
and EMH models hold. 

By putting 1=Θ  in the CLDPS model and 1=∆  in the EMH model, 
we obtain the decomposition of the S model as follows: 

Corollary 3. The S model holds, if and only if both the CQS and MH 
models hold. 

By the way, Caussinus [4] gave the theorem that the S model holds, if 
and only if both the QS and MH models hold. We point out that the CQS 
model is different from the QS model, and thus, Corollary 3 is different 
from Caussinus’s theorem. 

4. Goodness-of-fit Test 

Let ijn  denote the observed frequency in the ( )ji, -th cell of the 

RR ×  table ( ).,,1;,,1 RjRi …… ==  Assume that a multinomial 

distribution applies to the RR ×  table. The maximum likelihood 
estimates of expected frequencies under a model could be obtained by 
using, e.g., the Newton-Raphson method in the log-likelihood equation. 
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Each model can be tested for goodness-of-fit by, e.g., the likelihood 

ratio statistic (denote by 2G ) with the corresponding degrees of freedom. 

The 2G  is given by 

2

1 1
2 log ,

R R
ij

ij
iji j

n
G n m

= =

 
=  

 
∑∑  

where ijm  is the maximum likelihood estimate of expected frequency ijm  

under the model. The numbers of degrees of freedom for testing goodness-
of-fit of the models are given in Table 1. 

Table 1. The numbers of degrees of freedom for each model 

Models Degrees of freedom 

S ( ) 21−RR  

CLDPS ( ) ( ) 212 +− RR  

C2RPS ( ) 242 −− RR  

QS ( ) ( ) 212 −− RR  

CQS ( ) ( ) 212 −− RR  

CEQS ( ) 23−RR  

MH 1−R  

EMH 2−R  

( )2,1-WM1C =tt  2−R  

( )2,1-WM2C =tt  3−R  

( )2,1-D =tt  1 

5. An Example 

Consider the data in Table 2, taken from Tominaga ([8], p. 131). 
These data describe the cross-classification of father’s and son’s 
occupational status categories in Japan, which were examined in 1955.  
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Table 2. The cross-classification of father’s and son’s occupational status 
categories in Japan, which were examined in 1955 from Tominaga ([8],           
p. 131). (The upper and lower parenthesized values are maximum 
likelihood estimates of expected frequencies under the C2WM-1 and the 
C2WM-2 models, respectively.) 

 Son’s status  Father’s 
status (1) (2) (3) (4) 

Total 

(1) 80 72 37 19 208 

 (80.00) (69.33) (37.10) (18.07)  

 (80.00) (71.44) (37.63) (18.76)  

(2) 44 155 61 31 291 

 (44.40) (155.00) (66.29) (33.13)  

 (44.32) (155.00) (61.29) (30.94)  

(3) 26 73 218 45 362 

 (26.34) (71.65) (218.00) (41.08)  

 (25.96) (72.68) (218.00) (44.94)  

(4) 69 156 166 614 1005 

 (72.26) (149.53) (169.82) (614.00)  

 (69.15) (155.69) (166.20) (614.00)  

Total 219 456 482 709 1866 

Note: Status (1) is upper non-manual, (2) lower non-manual, (3) manual, and (4) 
agriculture. 

Table 3 gives the values of likelihood ratio test statistic 2G  for testing 
goodness-of-fit of each model. The QS, C2WM-1, and C2WM-2 models fit 
these data very well, however, the other models fit these data poorly. 
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Table 3. Values of likelihood ratio statistic 2G  for models applied to the 
data in Table 2 

Models Degrees of freedom 2G  

S 6 ∗08.205  

CLDPS 5 ∗53.113  

C2RPS 4 ∗39.83  

QS 3 0.82 

CQS 3 ∗11.35  

CEQS 2 ∗17.6  

MH 3 ∗55.203  

EMH 2 ∗68.82  

C1WM-1 2 ∗67.98  

C1WM-2 2 ∗33.41  

C2WM-1 1 1.63 

C2WM-2 1 0.02 

D-1(1, 2) 1 ∗28.32  

D-1(1, 3) 1 ∗04.76  

D-1(2, 3) 1 ∗53.34  

D-2(2, 3) 1 ∗05.36  

D-2(2, 4) 1 ∗56.72  

D-2(3, 4) 1 ∗89.43  

∗means significant at the 0.05 level. 

We see from Theorem 1 that, the poor fit of the C2RPS model is 
caused by the influence of the lack of structure of the CEQS and D-t 
models rather than the C2WM-t model for .2,1=t  
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Under the C2WM-2 model, the maximum likelihood estimates of 2∆  

and Λ  are 26.0ˆ 2 =∆  and ,17.4ˆ =Λ  respectively. Since 1ˆˆ 2 >Λ∆ l  for 

,3,2,1=l  it is estimated that ( )YX >Pr  is greater than ( );Pr YX <  
namely, it is estimated that the father’s status category in a father-son 
pair tends to be greater than his son’s status category. 

6. Concluding Remark 

In the present paper, we have considered some new models and have 
given theorems and corollaries with regard to decompositions of the 
C2RPS, CLDPS, and S models. As seen in example, the decomposition 
may be useful for exploring the reason for the poor fit when the C2RPS 
(CLDPS or S) model fits the data poorly. 
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